
Issue Date: 04/05

GESTRA Steam Systems

Steam Trap UNA 13, PN16, Cast Steel

Product Range A1

UNA 13

Materials	EN/DIN reference	ASTM equivalent ¹⁾			
Body	Cast steel GS-C25 (1.0619)	A216-WCB			
Cover	Cast steel GS-C25 (1.0619)	A216-WCB			
Ball float	Stainless steel X6 CrNiMoTi 17 122 (1.4571)	A 182 F 316			
Seat	Stainless steel X10 CrNiS 189 (1.4305)	AISI 303			
Ball valve	Stainless steel X5 CrNi 189 (1.4301)	A 182 F 304			
Fixing screws	Alloy steel 40 CrMoV 4 7 (1.7711)	A 193 B 16			
Cover gasket	Graphite/CrNi				
Thermostatic capsule 5N2	Hastelloy/Stainless steel				
Other internals	Stainless steel				

¹⁾ Physical and chemical properties comply with EN/DIN grade. ASTM nearest equivalent grade is stated for guidance only.

Ball-float traps with rolling ball valve. The ball valve is directly operated by the float as a function of the amount of condensate present.

The float traps can be used for all operating conditions within their operating range, as they are unaffected by back pressure.

The UNA 13 consists of a body with bolted cover, containing the control unit. The control unit can be replaced by levering it off its tapered interference-fit seat without removing the trap from the line.

The traps can be installed in horizontal lines ("h" design) or in vertical lines ("v" design). A conversion of "h" design to "v" design or vice versa is possible without any problem by repositioning body and control unit.

The direction of flow is indicated by an arrow, the position of installation by the word "Top" on the name plate.

Pressure/Temperature Rating (DIN 2401) UNA 13 Cast steel						
PMA (Maximum allowable pressure)	barg	16	13			
TMA (Maximum allowable temperature)	°C	120	300			
Δ PMX (Maximum different pressure (inlet pressure minus outlet pressure)	13bar (188psi)					

Connections

UNA 13 h/UNA 13 v, PN 16:

Screwed sockets: BSP or NPT (API). Flanges: DIN/EN PN16 or ASME Class 150

Socket-weld ends Butt-weld ends

Available Designs

UNA 13 h

for horizontal pipework, flow from left to right (seen from the cover side).

DN 15-25mm (1/2-1").

Conversion to obtain flow from right to left possible.

UNA 13 v

for vertical pipework with downward flow DN 15-25 mm ($\frac{1}{2}$ -1").

Duplex: Float control with thermostatic capsule 5N2 for automatic temperature-dependent air-venting from steam systems (e.g. UNA 13 h, Duplex, orifice 13, DN...).

On request all traps can be supplied with lifting lever (for purging) and hand-vent valve or upper and lower % "BSP connections (with plugs) in the cover for subsequent fitting of float-lifting lever, hand-vent valve or an air-balance pipe.

Float-lifting lever

Dimensions						
Nominal sizes DN	mm inch	15 ½	20 ¾	25 1		
UNA 13h / UNA 13v Overall length in mm Screwed BSP/NPT Flanged DIN/EN Flanged ASME Socket-weld ends Butt-weld ends	L	95 150 150 95 200	95 150 150 95 200	95 160 160 95 200		
Flange DIN/EN measurements in mm UNA13h / UNA13v	D b k g	95 14 65 45 14	105 16 75 58 14	115 16 85 68 14		
Number of bolts		4	4	4		
Socket-weld ends in mm	d1 d2 d	22 32 10	27 38 13	34 40 13		

Capacity Chart

The chart shows the maximum capacities of hot condensate for the range of orifices and sizes available for the float-controlled traps (without thermostatic capsule). The cold-water capacities are: Capacity of hot condensate multiplied by factor F.

The capacities are dependent on the differential pressure (working pressure). The differential pressure is the difference between inlet and outlet pressures and depends among other things on the run of the condensate line. If the condensate downstream of the trap is lifted, the differential pressure (working pressure) is reduced by approximately 1 bar for 7 m (or 2 psi for 3 feet) lift.

The maximum admissible differential pressure is dependent on the cross-sectional flow area of the orifice and the density of the liquid.

The standard designs of the traps for condensate from steam are available for the following maximum differential pressures:

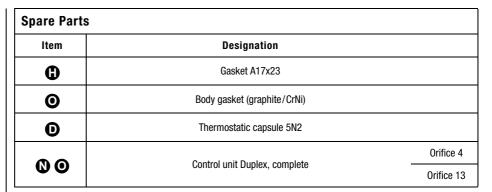
UNA 13: 13bar (188 psi).

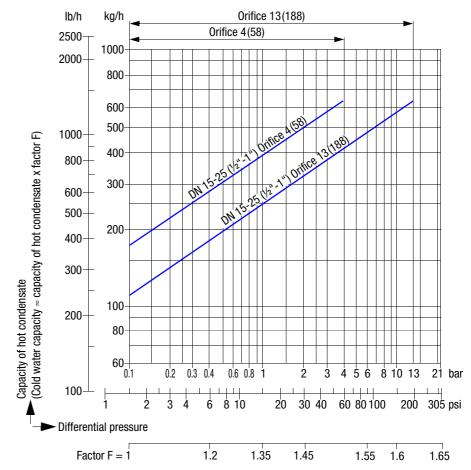
If, however, larger capacities are required, special orifices are available for differential pressures of:

UNA 13: 4bar (58psi).

When ordering please state:

Inlet pressure, outlet pressure, quantity of condensate to be discharged, design, size and desired orifice, position of trap and details of application.


The following test certificates can be issued on request, at extra cost:


In accordance with EN 10204-2.2 and -3.1 Å, -3.1 B and -3.1 C.

All inspection requirements have to be stated with the order. After supply of the equipment certificates cannot be established. For tests and inspection charges please consult us.

Supply in accordance with out general terms of business.

Technical modifications reserved.

Additional cold-water start-up capacity due to thermostatic capsule (Duplex design)											
Cold water ∆p	bar	1	2	3	4	6	8	10	13	18	21
	psi	14.5	29	44	58	87	116	145	188	260	305
approx.	kg/h	180	230	330	410	480	540	600	680	760	825
approx.	lb/h	397	507	727	904	1058	1190	1322	1499	1720	1819

K _V values (m³/h)					
DN 15-25mm (½-1")	Duplex				
Orifice 4	0.71				
Orifice 13	0.51				
$1 C_V (U.S.) = 1.17 \cdot K_V, 1 C_V (U.S.) = 0.98 \cdot K_V$					

Approx. weight						
Flanged	kg	6.0	6.5	7.0		
Screwed socket-weld ends butt-weld ends	kg	4.5	4.5	4.5		

Master Distributor in China & Taiwan

Quko Int'l Development Limited

Unit B, 17/F, EGL Tower, 83 Hung To Road, Kwun Tong, Kowloon, Hong Kong, China
Tel: (852) 2344 0201 Fax: (852) 2343 6078
Email: sales@qukointl.com Website: www.qukointl.com

